

2.6 Quarks and antiquarks

We have seen that hadrons (mesons, baryons, antibaryons) consist of combinations of quarks. For example, a proton is made up of two up quarks and one down quark (*uud*). A neutron contains one up and two down quarks (*udd*). We also know that the relative charge on a proton Q = +1, and on a neutron Q = 0.

The table, below, shows the properties of individual quarks:

	quarks			antiquarks		
	u	d	S	\overline{u}	\overline{d}	\overline{s}
Q	$+\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	$+\frac{1}{3}$	$+\frac{1}{3}$
S	0	0	-1	0	0	+1

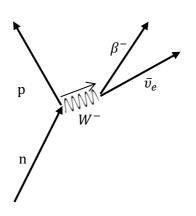
The relative charge Q and strangeness number S are shown for the up, down and strange quark. Note that the strange quark has a strangeness number S = -1, and the anti-strange quark has a strangeness number S = +1.

If we work out the charge of a proton, we just add together the charge of the constituent quarks (*uud*). Therefore, charge $Q = \frac{2}{3} + \frac{2}{3} + \left(-\frac{1}{3}\right) = +1$.

(1) *Work out the charge of a neutron from its constituent quarks.*

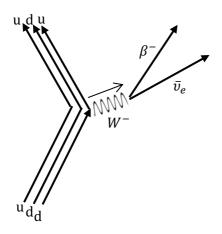
The proton and neutron don't contain a strange quark and so the strangeness number S=0 for both.

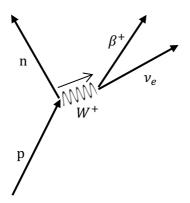
particle	Quark composition	Q	S
	composition		
π^{-}	$ar{u}d$		
π^0	$dar{d}$ or $uar{u}$		
\overline{n}	$\bar{u}\bar{d}ar{d}$		
<i>K</i> ⁺	us		
<i>K</i> ⁻	$\bar{u}s$		
K ⁰			
π^+			


(2) Complete the following table:

Remember that pions (pi mesons) don't contain a strange/anti-strange quark. Kaons contain a strange/anti-strange quark.

Beta decay


We have seen that a neutron changes to a proton during beta minus (β^{-}) decay. The Feynman diagram of this is shown below:


We can see that the neutron changes to a proton and emits a beta minus particle (an electron) as well as an anti-electron neutrino. A W^- boson is the exchange particle in this decay.

At the quark level, this is what is happening:

A down quark is changing to an up quark. The other two quarks remain unchanged. The result is that the neutron (*udd*) changes to a proton (*uud*).

During beta plus (β^+) decay, a proton changes to a neutron and emits a beta plus particle and an electron neutrino. The Feynman diagram of this is shown below:

(3) Praw a Feynman diagram for beta plus decay at a quark level.